

EB-IO-LINK1

Kommunikationsmodul zwischen SPS/PC und EasyB - Einkanalschutzschaltersystem

Inhaltsverzeichnis

1. All	gemeine Hinweise	3
1.1	Sicherheitshinweise	
1.2	Qualifiziertes Personal	3
1.3	Bestimmungsgemäßer Gebrauch	3
1.4	Haftungsausschluss	3
2. Pro	oduktbeschreibung	4
2.1	Beschreibung des Kommunikationsmoduls	4
2.2	Systemaufbau	5
2.3	Bemaßung	6
2.4	Montage	6
2.5	Anschlüsse und Signalisierung	7
3. Inb	petriebnahme	8
3.1	Betriebszustände	8
3.2	Kommunikation	9
4. Pro	ozessdaten und Parameter	
4.1	Prozessdaten	10
4.2	Azyklische E/A Daten des Kommunikationsmodul	
4.3	Azyklische E/A Daten des Verbundes	
4.3.1	Kodierung der Schutzschalter Ströme	
4.3.2	Kodierung des Schutzschalter Status	18
4.3.3	Kodierung der Schutzschalter Optionen	19
4.3.4	Kodierung der Schutzschalter Typen	
4.3.5	Kodierung der Schutzschalter Kommandos	20
4.3.6	Kodierung zum Reset Schutzschalter Auslösezähler	20

1. Allgemeine Hinweise

1.1 Sicherheitshinweise

Bitte lesen Sie diese Warnungen und Sicherheitshinweise sorgfältig durch, bevor Sie das Gerät in Betrieb nehmen. Das Gerät darf nur durch fachkundiges und qualifiziertes Personal installiert werden. Bei Funktionsstörungen oder Beschädigungen schalten Sie sofort die Versorgungsspannung ab und senden das Gerät zur Überprüfung an Fa. Block. Das Gerät beinhaltet keine Servicebauteile. Bei Auslösen einer internen Sicherung liegt höchstwahrscheinlich ein interner Defekt am Gerät vor. Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne aufzufassen.

1.2 Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt darf nur von qualifiziertem Personal unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation gehandhabt werden, insbesondere der darin enthaltenen Sicherheitsund Warnhinweise. Qualifiziertes Personal kann auf Grund seiner Ausbildung und Erfahrung gewährleisten, dass der Einsatz des beschrieben Produktes allen Sicherheitsanforderungen sowie den geltenden Bestimmungen, Vorschriften, Normen und Gesetzten genügt.

1.3 Bestimmungsgemäßer Gebrauch

Dieses Gerät ist für den Einbau in ein Gehäuse konzipiert und zur Verwendung für allgemeine elektronische Geräte, wie z.B. Industriesteuerungen, Bürogeräte, Kommunikationsgeräte oder Messgeräte geeignet. Benutzen Sie dieses Gerät nicht in Steuerungsanlagen von Flugzeugen, Zügen oder nuklearen Einrichtungen, in denen eine Funktionsstörung zu schweren Verletzungen führen oder Lebensgefahr bedeuten kann.

1.4 Haftungsausschluss

Der Inhalt dieser Druckschrift wurde mit größter Sorgfalt auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch kann es zu Abweichungen zwischen dem Produkt und der Dokumentation kommen. Abweichungen können auch aufgrund der ständigen Weiterentwicklung des Produktes entstehen. Aus diesem Grund können wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Sollte diese Dokumentation Fehler enthalten, behalten wir uns das Recht vor, notwendige Korrekturen ohne vorherige Ankündigung durchzuführen.

2. Produktbeschreibung

2.1 Beschreibung des Kommunikationsmoduls

Das Kommunikationsmodul EB-IO-LINK1 dient als Schnittstelle zur Anbindung an eine übergeordnete Steuerung und ist kompatibel mit Schutzschaltern der Variante EB-08, EB-18 und EB-38.

Das Kommunikationsmodul unterstützt den IO-Link Standard V1.1 und arbeitet mit der Geschwindigkeit COM 3 von 230,4 kB. Der Zyklische Datenaustausch beträgt 2,0ms und beinhaltet 23 Bytes an Prozessdaten.

Um einen fehlerfreien Betrieb zu gewährleisten darf die Maximale Anzahl von 16 Schutzschaltern nicht überschritten werden.

2.2 Systemaufbau

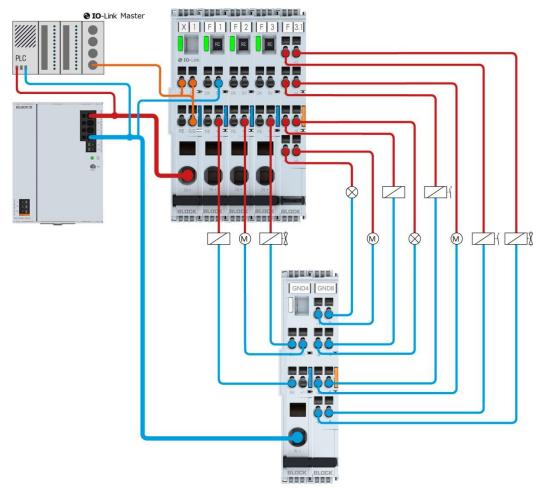


Abbildung 1 Aufbau eines Verbundes mit EB-GND4/8

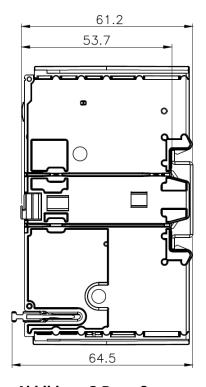
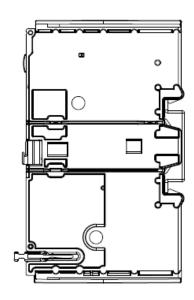
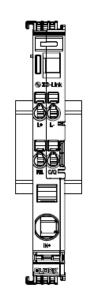
Verwendete Module im Systemaufbau:

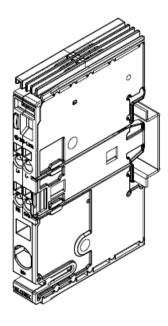
X1 EB-IO-LINK F1 EB-0824-100-0 F2 EB-0824-100-0 F3 EB-0824-100-0 F3.1 EB-PMM GND4 EB-GND4 GND8 EB-GND8

Hinweise:

Eine abweichende Verdrahtung kann zur Zerstörung der Module führen. Die IO-LINK-Leitung darf eine maximale Länge von 20m nicht überschreiten.

2.3 Bemaßung


Abbildung 2 Bemaßung

2.4 Montage

Abbildung 3 Montage

2.5 Anschlüsse und Signalisierung

Abbildung 4 Übersicht der Anschlüsse und der Signalisierung

- 1) Aufnahme Querverbinder EB-BAR
- 2) Einspeiseklemme bis max. 40A
- 3) Kommunikation C/Q
- 4) Reset Eingang RE
- 5) Entrieglungslasche
- 6) Kommunikation L-
- 7) Kommunikation L+
- 8) Signalisierung LED
- 9) Beschriftungsfeld

3. Inbetriebnahme

Das EB-IO-LINK1 Modul initialisiert sich selbständig durch Anlegen der Versorgungsspannung an die Klemme IN+ oder durch Aufbau der IO-Link Verbindung.

Ein funktioneller Betrieb ist nur durch das Anreihen von Schutzschaltermodulen und Anlegen der Versorgungsspannung an IN+ möglich.

Nach dem Anlegen der Versorgungsspannung werden alle angeschlossenen Schutzschalter der Reihe nach adressiert und im Anschluss daran der Reihe nach selektiv eingeschaltet.

Unter Verwendung des IO-Link Moduls können maximal bis zu 16 Schutzschalterkanäle adressiert und verwaltet werden.

Hinweise:

Beim Anlegen der Versorgungsspannung an IN+ ist es zwingend erforderlich dass eine separierte GND-Leitung an einen der Schutzschalterkanäle angeschlossen wird. Eine Inbetriebnahme ohne angereihte Schutzschaltermodule kann zu einem Fehlverhalten führen.

3.1 Betriebszustände

Das EB-IO-LINK1 Modul verfügt über eine LED zum Anzeigen des jeweiligen Betriebszustandes.

Tabelle 1 Betriebszustände

Betriebszustand	Signalisierung LED	Bemerkung
Eingeschaltet, offline	Grün blinkend	Verbund ist eingeschaltet und
		adressiert, keine IO-Link
		Kommunikation
Eingeschaltet, online	Grün leuchtend	Verbund ist eingeschaltet und
		adressiert, IO-Link
		Kommunikation ist aufgebaut
Aus	Aus	Keine Versorgungsspannung
		oder IO-Link Verbindung

3.2 Kommunikation

Das Kommunikationsmodul EB-IO-LINK1 kommuniziert nach dem IO-LINK Standard V1.1 und ist abwärtskompatibel zum IO-LINK Standard V1.0.1. Für die Kommunikation mit dem Kommunikationsmodul und dem daran angeschlossenen Verbund wird ein IO-Link Master in der Version V1.1 oder V1.0 benötigt.

Das Kommunikationsmodul arbeitet im COM 3 Mode (230,4 kB) und tauscht pro Zyklus (2ms) 23Byte an Prozessdaten mit dem Master aus.

4. Prozessdaten und Parameter

Das EB-IO-LINK1 Modul verfügt über 23 Bytes an Prozessdaten die alle 2ms mit dem Master ausgetauscht werden. Der Aufbau und die Gliederung dieser Daten wird in Kapitel 4.1 ausführlich behandelt.

Neben den Prozessdaten werden die Parameter- sowie Diagnosedaten jedes einzelnen Schutzschalterkanals übertragen, siehe hierzu Kapitel 4.2 und Kapitel 4.3.

4.1 Prozessdaten

Die Prozessdaten werden in einem Zyklus von 2ms mit 230400 Baud mit dem IO-Link Master ausgetauscht. Die Prozessdaten bestehen aus insgesamt 23 Bytes. Die Kodierung der einzelnen Bytes sind den Tabellen 2 -24 zu entnehmen.

Tabelle 2 Prozessdaten Collective Message Byte 1

Byte 1	MSB				LSB			
	Bit							
Beschreibung	7	6	5	4	3	2	1	0
00 Collective Message Channel Tripped / Switched Off	0	0	0	0	0	0	0	1
01 Collective Message Current >90% Nominal	0	0	0	0	0	0	1	0
02 Group Reset	0	0	0	0	0	1	0	0
03 Reserved	0	0	0	0	1	0	0	0
04 Reserved	0	0	0	1	0	0	0	0
05 Reserved	0	0	1	0	0	0	0	0
06 Reserved	0	1	0	0	0	0	0	0
07 Input Voltage Alarm	1	0	0	0	0	0	0	0

Tabelle 3 Prozessdaten eBreaker 1 current Byte 2

Byte 2	
Beschreibung	Datentyp
08 eBreaker 01 current	Unsigned Integer 8

Tabelle 4 Prozessdaten eBreaker 2 current Byte 3

Byte 3	
Beschreibung	Datentyp
09 eBreaker 02 current	Unsigned Integer 8

Tabelle 5 Prozessdaten eBreaker 3 current Byte 4

Byte 4	
Beschreibung	Datentyp
10 eBreaker 03 current	Unsigned Integer 8

Handbuch V1.0

EB-IO-LINK1

Tabelle 6 Prozessdaten eBreaker 4 current Byte 5

Byte 5	
Beschreibung	Datentyp
11 eBreaker 04 current	Unsigned Integer 8

Tabelle 7 Prozessdaten eBreaker 5 current Byte 6

Byte 6	
Beschreibung	Datentyp
12 eBreaker 05 current	Unsigned Integer 8

Tabelle 8 Prozessdaten eBreaker 6 current Byte 7

Byte 7	
Beschreibung	Datentyp
13 eBreaker 06 current	Unsigned Integer 8

Tabelle 9 Prozessdaten eBreaker 7 current Byte 8

Byte 8		
	Beschreibung	Datentyp
	14 eBreaker 07 current	Unsigned Integer 8

Tabelle 10 Prozessdaten eBreaker 8 current Byte 9

Byte 9	
Beschreibung	Datentyp
15 eBreaker 08 current	Unsigned Integer 8

Tabelle 11 Prozessdaten eBreaker 9 current Byte 10

Byte 10	
Beschreibung	Datentyp
16 eBreaker 09 current	Unsigned Integer 8

Tabelle 12 Prozessdaten eBreaker 10 current Byte 11

Byte 11	
Beschreibung	Datentyp
17 eBreaker 10 current	Unsigned Integer 8

Tabelle 13 Prozessdaten eBreaker 11 current Byte 12

Byte 12	
Beschreibung	Datentyp
18 eBreaker 11 current	Unsigned Integer 8

Tabelle 14 Prozessdaten eBreaker 12 current Byte 13

Byte 13	
Beschreibung	Datentyp
19 eBreaker 12 current	Unsigned Integer 8

Tabelle 15 Prozessdaten eBreaker 13 current Byte 14

Byte 14	
Beschreibung	Datentyp
20 eBreaker 13 current	Unsigned Integer 8

Tabelle 16 Prozessdaten eBreaker 14 current Byte 15

Byte 15	
Beschreibung	Datentyp
21 eBreaker 14 current	Unsigned Integer 8

Tabelle 17 Prozessdaten eBreaker 15 current Byte 16

Byte 16	
Beschreibung	Datentyp
22 eBreaker 15 current	Unsigned Integer 8

Tabelle 18 Prozessdaten eBreaker 16 current Byte 17

Tubelle 10 i l'ozessuatell ebieuk	ci 10 carrent byte 17
Byte 17	
Beschreibung	Datentyp
23 eBreaker 16 current	Unsigned Integer 8

Tabelle 19 Prozessdaten eBreaker tripped Byte 18

Byte 18	MSB							
Beschreibung	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
24 eBreaker tripped CH1	0	0	0	0	0	0	0	1
24 eBreaker tripped CH2	0	0	0	0	0	0	1	0
24 eBreaker tripped CH3	0	0	0	0	0	1	0	0
24 eBreaker tripped CH4	0	0	0	0	1	0	0	0
24 eBreaker tripped CH5	0	0	0	1	0	0	0	0
24 eBreaker tripped CH6	0	0	1	0	0	0	0	0
24 eBreaker tripped CH7	0	1	0	0	0	0	0	0
24 eBreaker tripped CH8	1	0	0	0	0	0	0	0

Tabelle 20 Prozessdaten eBreaker tripped Byte 19

Byte 19	LSB							
Beschreibung	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
24 eBreaker tripped CH9	0	0	0	0	0	0	0	1
24 eBreaker tripped CH10	0	0	0	0	0	0	1	0
24 eBreaker tripped CH11	0	0	0	0	0	1	0	0
24 eBreaker tripped CH12	0	0	0	0	1	0	0	0
24 eBreaker tripped CH13	0	0	0	1	0	0	0	0
24 eBreaker tripped CH14	0	0	1	0	0	0	0	0
24 eBreaker tripped CH15	0	1	0	0	0	0	0	0
24 eBreaker tripped CH16	1	0	0	0	0	0	0	0

Tabelle 21 Prozessdaten eBreaker option 1 Byte 20

Byte 20		MS	SB		LSB				
	Bit								
Beschreibung	7	6	5	4	3	2	1	0	
25 eBreaker option 1 CH1	0	0	0	0	0	0	0	1	
25 eBreaker option 1 CH2	0	0	0	0	0	0	1	0	
25 eBreaker option 1 CH3	0	0	0	0	0	1	0	0	
25 eBreaker option 1 CH4	0	0	0	0	1	0	0	0	
25 eBreaker option 1 CH5	0	0	0	1	0	0	0	0	
25 eBreaker option 1 CH6	0	0	1	0	0	0	0	0	
25 eBreaker option 1 CH7	0	1	0	0	0	0	0	0	
25 eBreaker option 1 CH8	1	0	0	0	0	0	0	0	

Tabelle 22 Prozessdaten eBreaker option 1 Byte 21

Byte 21		MS		LSB				
	Bit							
Beschreibung	7	6	5	4	3	2	1	0
25 eBreaker option 1 CH9	0	0	0	0	0	0	0	1
25 eBreaker option 1 CH10	0	0	0	0	0	0	1	0
25 eBreaker option 1 CH11	0	0	0	0	0	1	0	0
25 eBreaker option 1 CH12	0	0	0	0	1	0	0	0
25 eBreaker option 1 CH13	0	0	0	1	0	0	0	0
25 eBreaker option 1 CH14	0	0	1	0	0	0	0	0
25 eBreaker option 1 CH15	0	1	0	0	0	0	0	0
25 eBreaker option 1 CH16	1	0	0	0	0	0	0	0

Tabelle 23 Prozessdaten eBreaker option 2 Byte 22

Byte 22			LSB					
	Bit							
Beschreibung	7	6	5	4	3	2	1	0
26 eBreaker option 2 CH1	0	0	0	0	0	0	0	1
26 eBreaker option 2 CH2	0	0	0	0	0	0	1	0
26 eBreaker option 2 CH3	0	0	0	0	0	1	0	0
26 eBreaker option 2 CH4	0	0	0	0	1	0	0	0
26 eBreaker option 2 CH5	0	0	0	1	0	0	0	0
26 eBreaker option 2 CH6	0	0	1	0	0	0	0	0
26 eBreaker option 2 CH7	0	1	0	0	0	0	0	0
26 eBreaker option 2 CH8	1	0	0	0	0	0	0	0

Tabelle 24 Prozessdaten eBreaker option 2 Byte 23

Byte 23	MSB				LSB			
Beschreibung	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
26 eBreaker option 2 CH9	0	0	0	0	0	0	0	1
26 eBreaker option 2 CH10	0	0	0	0	0	0	1	0
26 eBreaker option 2 CH11	0	0	0	0	0	1	0	0
26 eBreaker option 2 CH12	0	0	0	0	1	0	0	0
26 eBreaker option 2 CH13	0	0	0	1	0	0	0	0
26 eBreaker option 2 CH14	0	0	1	0	0	0	0	0
26 eBreaker option 2 CH15	0	1	0	0	0	0	0	0
26 eBreaker option 2 CH16	1	0	0	0	0	0	0	0

4.2 Azyklische E/A Daten des Kommunikationsmodul

Bei den Azyklischen E/A Daten handelt es sich um Informationen die direkt vom Kommunikationsmodul EB-IO-LINK1 abgefragt werden können. Die Abfrage erfolgt mit Hilfe eines Funktionsbausteins der vom IO-LINK Master Hersteller zur Verfügung gestellt wird.

Neben den Standardinformationen (bis Index 37) können hier Parameter vorgegeben und abgerufen werden, nachfolgend dargestellt in Tabelle 25:

Tabelle 25 Azyklischen E/A Daten

Index dec	Funktionen	Datentyp	Attribute	Bemerkung
16	Vendor Name	String	RO	IO-Link Interface und System Spezifikation V1.1.2
17	Vendor Text	String	RO	IO-Link Interface und System Spezifikation V1.1.2
18	Product Name	String	RO	IO-Link Interface und System Spezifikation V1.1.2
19	Product Id	String	RO	IO-Link Interface und System Spezifikation V1.1.2
20	Product Text	String	RO	IO-Link Interface und System Spezifikation V1.1.2
21	Product Serial Number	String	RO	IO-Link Interface und System Spezifikation V1.1.2
22	Hardware Revision	String	RO	IO-Link Interface und System Spezifikation V1.1.2
23	Firmware Revision	String	RO	IO-Link Interface und System Spezifikation V1.1.2
24	Application Specific Tag	String	R/W	IO-Link Interface und System Spezifikation V1.1.2
32	Error Count	16 Bit	RO	IO-Link Interface und System Spezifikation V1.1.2
36	Device Status	8 Bit	RO	IO-Link Interface und System Spezifikation V1.1.2
37	Detalied Device Status	String	RO	IO-Link Interface und System Spezifikation V1.1.2
81	Gateway Options	8 Bit	R/W	Optionen des Koppelmoduls
90	Input Voltage	16 Bit	RO	Eingangsspannungshöhe an der Einspeiseklemme
91	Number of Nodes	8 Bit	RO	Anzahl der Adressierten Schutzschalter
92	ProcessData Option1	16	R/W	Optionale Prozessdaten Byte 20 - 21
93	ProcessData Option2	16	R/W	Optionale Prozessdaten Byte 22 - 23
100	ThresholdCriticalInputVoltageMax	16 Bit	R/W	Obere Grenze für Input Voltage Alarm
101	ThresholdCriticalInputVoltageMin	16 Bit	R/W	Untere Grenze für Input Voltage Alarm
102	Events Enable	8 Bis	R/W	Events für das erste Prozessdatenbyte

4.3 Azyklische E/A Daten des Verbundes

Bei den Azyklischen E/A Daten handelt es sich um Informationen die direkt von den Schutzschalterkanälen bezogen werden können, nachfolgend dargestellt in **Tabelle 26**.

Die Verschiedenen Kodierungen der Daten sind im Anschluss dargestellt.

Tabelle 26 Azyklischen E/A Daten Verbund

Index dec	Funktionen	Datentyp	Attribute	Bemerkung
70	eBreaker RC_Status 1-8	8 Bit	RO	Prüf Bit zum Einstellen des Stromes
71	eBreaker RC_Status 9-16	8 Bit	RO	Prüf Bit zum Einstellen des Stromes
72	eBreaker RC_Status 17-24	8 Bit	RO	Prüf Bit zum Einstellen des Stromes
73	eBreaker RC_Status 25-32	8 Bit	RO	Prüf Bit zum Einstellen des Stromes
74	eBreaker RC_Status 33-40	8 Bit	RO	Prüf Bit zum Einstellen des Stromes
80	eBreaker Command(ON/OFF/RESET)	8Bit	wo	Ein- Ausschalten / Zurücksetzen der Schutzschalter
82	eBreaker Set Options to ALL	8Bit	wo	Übertragen der ersten Schutzschalter Optionen auf alle Module
83	eBreaker Reset Trip Counter 1-40	8Bit	wo	Rücksetzten des Auslösezählers. Nach Neustart automatisch 0
201 - 216	eBreaker Trip Counter	8Bit	RO	Auslösezähler des Schutzschalters
301 - 316	eBreaker Current	16Bit	RO	IST-Strom
401 - 416	eBreaker Trip Current	8Bit	RW	Auslöse Strom
501 - 516	eBreaker Status	8Bit	RO	Status der Schutzschalter
601 - 616	eBreaker Software Version	16Bit	RO	Software Version des Schutzschalters
701 – 716	eBreaker Options	16Bit	RW	Optionen des Schutzschalters
801 - 816	eBreaker Production Number	String	RO	Produktionsnummer des Schutzschalters
901 - 916	eBreaker Type	8Bit	RO	Typenbezeichnung des Schutzschalters

4.3.1 Kodierung der Schutzschalter Ströme

Die Kodierung der Auslöseströme (Index 401 - 416) ist in **Tabelle 29** dargestellt:

Tabelle 27 Kodierung der Ströme

Dez. Wert	Funktionen	Bemerkung
0	Default	IODD DEFAULT
5	0.5	Auslösestrom 0.5A
10	1	Auslösestrom 1A
20	2	Auslösestrom 2A
30	3	Auslösestrom 3A
40	4	Auslösestrom 4A
50	5	Auslösestrom 5A
60	6	Auslösestrom 6A
80	8	Auslösestrom 8A
100	10	Auslösestrom 10A

4.3.2 Kodierung des Schutzschalter Status

Die Kodierung des Status (Index 501 - 516) ist in **Tabelle 27** dargestellt:

Tabelle 28 Kodierung des Status

Dez. Wert	Funktionen	Bemerkung
0	N.C.	Nicht verbunden
1	Switched Off	Ausgeschaltet über Schnittstelle
2	Switched On	Eingeschaltet
3	Tripped	Ausgelöst
6	Current >90% Nominal	Strom >90% Nenn
14	Current >100% Nominal	Strom >100% Nenn
18	Tripped, Hardware Error	Hardware Fehler
20	Tripped, thermal release	Thermische Entspannung
50	Switched Off, local	Ausgeschaltet Lokal

Hinweis:

Wenn ein Schutzschalter lokal ausgeschaltet wurde kann dieser auch nur lokal wieder eingeschaltet werden. Diese Funktionalität dient der Sicherheit bei Arbeiten an der Anlage.

4.3.3 Kodierung der Schutzschalter Optionen

Die Kodierung der Optionen (Index 701 - 716) ist in **Tabelle 28** dargestellt:

Tabelle 29 Kodierung der Optionen

		MSB1				LSB1			MSB0			LSB0				
	Bit7	Bit6	Bit5	Bit4	Bit	Bit	Bit	Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Beschreibung					3	2	1	0								
Tripped / Tripped OFF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
OK inverted / non inverted	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Auto Addr On / Off	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Hinweis:

Die Optionen der Schutzschalter entsprechen im Auslieferungszustand 3 (DEZ), d.h. die ersten beiden Optionen sind gesetzt.

Die Option "Auto Addr On / Off" ist erst ab der Schutzschalter Firmware Version 1.12 verfügbar (RO) und zeigt an ob die automatische Adressvergabe ein oder ausgeschaltet ist.

4.3.4 Kodierung der Schutzschalter Typen

Die Kodierung der Typen (Index 901 - 916) ist in **Tabelle 30** dargestellt:

Tabelle 30 Kodierung der Typen

Dez. Wert	Bezeichnung	Тур	Auslöseströme
170	EB-3824-100-0	Schutzschalter	Auslöseströme nur über Schnittstelle einstellbar (0,5 – 10A)
138	EB-0824-100-0	Schutzschalter	Auslöseströme einstellbar über Schnittstelle oder am Schutzschalter (0,5 – 10A)
145	EB-1824-010-0	Schutzschalter	Fester Wert 1A nominal
146	EB-1824-020-0	Schutzschalter	Fester Wert 2A nominal
147	EB-1824-030-0	Schutzschalter	Fester Wert 3A nominal
148	EB-1824-040-0	Schutzschalter	Fester Wert 4A nominal
150	EB-1824-060-0	Schutzschalter	Fester Wert 6A nominal
152	EB-1824-080-0	Schutzschalter	Fester Wert 8A nominal
154	EB-1824-100-0	Schutzschalter	Fester Wert 10A nominal

4.3.5 Kodierung der Schutzschalter Kommandos

Die Kodierung der Kommandos (Index 80) ist in Tabelle 30 dargestellt:

Tabelle 31 Kodierung der Kommandos

Dez. Wert	Bezeichnung	Bemerkung
1	ON	Kanal 1 An
2	OFF	Kanal 1 Aus
3	RESET	Kanal 1 Reset
6	ON	Kanal 2 An
7	OFF	Kanal 2 Aus
8	RESET	Kanal 2 Reset
11	ON	Kanal 3 An
12	OFF	Kanal 3 Aus
13	RESET	Kanal 3 Reset

Hinweis:

Die Adressen der Kanäle werden durch einen Offset von Dezimal 5 gebildet.

4.3.6 Kodierung zum Reset Schutzschalter Auslösezähler

Die Kodierung der Reset Funktion (Index 83) für den Auslösezähler ist in **Tabelle 30** dargestellt:

Tabelle 32 Kodierung vom Reset

Dez. Wert	Funktionen	Bemerkung
1	RESET	Kanal 1 Reset Trip Counter
2	RESET	Kanal 2 Reset Trip Counter
3	RESET	Kanal 3 Reset Trip Counter
4	RESET	Kanal 4 Reset Trip Counter
5	RESET	Kanal 5 Reset Trip Counter
6	RESET	Kanal 6 Reset Trip Counter

Hinweis:

Die Adressen der Kanäle werden durch die Kanalnummern gebildet.